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Abstract. In situ high-pressure x-ray diffraction experiments have been performed on quasi-
crystalline Ti–Zr–Ni in energy-dispersive mode using synchrotron radiation. Pressures up to 30
GPa were generated using a diamond anvil cell. The bulk modulus of Ti–Zr–Ni was determined
to be B0 = 166 GPa ± 13 GPa. Some of the experiments were performed under slightly non-
hydrostatic conditions. In these runs, deviations from a standard equation of state could be observed
and these are due to additional strains. According to the model of Singh and Kennedy for elastically
isotropic solids, these strains are proportional to the non-hydrostatic stress component and indirectly
proportional to the shear modulus of the sample. From our measurements, the shear modulus
of icosahedral Ti–Zr–Ni was estimated to be µ ≈ 7 GPa with a relative error of about 50%.
This value is low compared to the shear moduli of icosahedral Al–Cu–Fe, Al–Pd–Mn (for both,
µ ≈ 65 GPa) and Al–Li–Cu (µ = 38 GPa). The Poisson’s ratio of Ti–Zr–Ni was determined to
be ν = 0.48 ± 0.015. This value is close to the maximum value which is allowed by the laws of
thermodynamics, namely ν = 0.5. The Poisson’s ratios of common metals (ν ≈ 1/3) and other
icosahedral alloys like Al–Cu–Fe (ν = 0.19), Al–Pd–Mn (ν = 0.28) and Al–Li–Cu (ν = 0.25)
are much lower.

1. Introduction

Since the discovery of quasicrystals in 1984 [1], studies have been mainly devoted to the
formation, structure and stability against temperature, while studies concerning the high-
pressure properties of these materials are still rare. The first high-pressure investigations
were performed on icosahedral Al–Mn alloys which were found to be stable up to pressures of
28 GPa [2] and 47 GPa [3], respectively. On the other hand, Al–Li–Cu undergoes an irreversible
amorphization at pressures of about 20 GPa [4]. In the last few years, interest was focused
on the high-pressure properties of the thermally stable Al–Cu–TM (TM: transition metal)
and Al–Pd–TM phases. It was found that Al–Cu–Fe [5, 6], Al–Cu–Re [7], Al–Pd–Mn [8]
and Al–Pd–Ru [7] are stable up to pressures of about 35 GPa. Recently, the stability of
Al–Pd–Mn [9] and decagonal Al–Ni–Co [10] up to 70 GPa were demonstrated. All these
high-pressure studies were conducted on Al-based quasicrystalline alloys. In recent years,
Ti-based alloys were discovered which also form stable icosahedral phases. These materials
are interesting from a technical point of view due to their ability to store hydrogen [11, 12].
The stability of the icosahedral structure under pressure is important for sintering processes
and various high-pressure synthesis procedures. The first high-pressure study on Ti–Zr–Ni has
shown that this material is stable up to pressures of 30 GPa [13,14]. Strong deviations from an
equation of state could be observed and are reported in the present paper. These effects include
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quasilattice constant increase under pressure as well as hysteresis loops being produced during
pressure cycles. Similar effects have been reported for the compression curves of Cu3Au [15],
a ductile, elastically anisotropic material. In this case, the high-pressure behaviour can be
explained in terms of plastic deformation caused by non-hydrostatic stresses and local micro-
stresses at the grain boundaries due to elastic anisotropy. However, these explanations cannot
be used for Ti–Zr–Ni since icosahedral alloys are known to be brittle and elastically isotropic.

2. Experimental procedure

The Ti52.8Zr26.2Ni21 samples were prepared by single-roller melt spinning in a protective Ar
atmosphere. The resulting alloys formed ribbons 1 cm to 10 cm long having an average cross-
section of 2 mm×50µm. Small sample grains were obtained by dry grinding in an agate mortar.
The in situ high-pressure x-ray diffraction experiments were performed using synchrotron
radiation at the F3 beamline of HASYLAB/DESY synchrotron radiation laboratory (Hamburg,
Germany) in energy-dispersive mode. More information on the experimental station can be
found in [16]. The diffraction angle was chosen to be about 5◦ and was calibrated using a gold
foil. The relation between the interplanar distance d, x-ray energy E and diffraction angle �
is given by

d (Å) = 6.199

sin� E (keV)
. (1)

For the primary and scattered beams, tungsten collimation slits were used. Scattered
photons were collected in an energy range from 14 keV to 68 keV using a Ge solid-state
detector. Pressures were generated using a gas-membrane diamond anvil cell (DIACELL)
equipped with 500 µm diameter diamonds. The samples were enclosed in a 150 µm diameter
hole in a 200 µm thick Inconel gasket preindented to about 50 µm. A single flake of Ti–Zr–Ni
was loaded together with sodium chloride as the pressure-transmitting medium and internal
pressure marker. Pressures were calculated using the (200) diffraction line from sodium
chloride. This was done using a Birch equation of state with parameters B0 = 24.03 GPa and
B ′

0 = 4.71 obtained from a fit to the data of Decker [17]. During one run, a ruby chip was
added for cross-checking the pressure calibration using the ruby fluorescence method. In this
case, pressures were calculated using the formula given in reference [18]. All experiments
have been performed at room temperature.

The indexing of the icosahedral reflections was done using the method proposed by Cahn
et al [19]:

q = 1

dN,M

= 1

a6

√
N + Mτ√
2(2 + τ)

. (2)

Here q is the scattering vector in parallel space, τ = (1+
√

5)/2 is the golden mean and a6

is the hypercubic lattice parameter in the six-dimensional hyperspace. The diffraction patterns
were analysed by profile matching with Lorentz and Pearson VII functions. The hypercubic
lattice parameter was calculated using the icosahedral reflections (18, 29), (20, 32) and (52, 84).
To check whether the compression was isotropic, the pressure dependence of the d-spacing
ratios d(18, 29)/d(20, 32), d(18, 29)/d(52, 84) was calculated. These ratios are constant for
all pressures within an error of 0.3%

The pressure dependence of the hypercubic lattice parameter is described using the Birch
equation of state

p = 3

2
B0

[(
a

a0

)−7

−
(
a

a0

)−5
] [

1 +
3

4
(B ′

0 − 4)

[(
a

a0

)−2

− 1

]]
(3)
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where B0 is the zero-pressure bulk modulus and B ′
0 the first pressure derivative.

It must be noted that the volume of the unit cells cannot be determined directly with x-ray
diffraction; only the values of the lattice spacings are accessible. Furthermore, in the energy-
dispersive geometry used in the present experiments, only lattice spacings which lie nearly
perpendicularly to the incident beam contribute to the diffracted intensity (see also figure 4).
This will be discussed in more detail in section 4.

3. Results

The evolution of the relative hypercubic lattice parameter of Ti–Zr–Ni under increasing pressure
is shown in figure 1. Different symbols correspond to three different sample loadings. Although
every sample behaves differently in the pressure range between 0 GPa and 8 GPa, the behaviour
of all samples can be grouped into three stages: an initial stage of high compressibility is
followed by a stage of hardening. Finally we observe a stage of lattice parameter increase.
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0.995

1
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a 0

pressure (GPa)

Figure 1. The dependence of the relative hypercubic lattice constant a/a0 of Ti–Zr–Ni on the
pressure. The symbols correspond to three different runs.

During the initial stage of compression, from 0 GPa to 2–3 GPa, the samples show a very
high compressibility. In this stage of compression the bulk modulus has values in the range
B0 ≈ 60–90 GPa. These values are lower than the bulk moduli of pure Ti (B0 = 106 GPa),
Zr (B0 = 94.4 GPa) and Ni (B0 = 179 GPa) [20]. From 2–3 GPa to 4–6 GPa, the Ti–Zr–Ni
samples seem to harden, i.e. the compressibility decreases. In the pressure range from 4–
6 GPa to approximately 8 GPa, the quasilattice seems to increase. This is evidenced by the
fact that the NaCl diffraction lines shift towards higher energies (indicating decreasing lattice
parameters), whereas the diffraction lines of the icosahedral phase shift to lower energies
(indicating increasing lattice parameters), as shown in figure 2.

For data points collected at pressures above 8 GPa, the quasilattice parameter decreases
with increasing pressure. However, fitting a Birch EOS to data points collected above 8 GPa
is only possible if one assumes a zero-pressure hypercubic lattice constant of a/a0 ≈ 1.0071.
This behaviour is reflected by all three icosahedral reflections observed, which correspond
to fivefold symmetry, (18, 29), and twofold symmetry, (20, 32) and (52, 84). In different
runs, all samples were found to behave in the same way. However, the value of the initial
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Figure 2. Diffraction patterns of Ti–Zr–Ni at 4.7 GPa and 6.6 GPa. The (200) reflection of NaCl is
shifted towards higher energies; the reflections (18, 29) and (20, 32) are shifted to lower energies.

compressibility and also the onset pressure of the quasilattice parameter increase were different
for different runs.

Another set of experiments were performed in cycles, i.e. spectra were collected during
compression, pressure release and second pressure increase. During the first compression the
behaviour was identical to the one just described: phases of low compressibility, hardening and
lattice parameter increase could be observed. On pressure release, the resulting decompression
curve does not lie on the initial pressure-increase curve but on a curve which is an extrapolation
to lower pressures of the data points collected above 8 GPa during pressure increase. In the
pressure range between 2 GPa and 4 GPa, the quasilattice parameters are larger than the one
at ambient pressure (a6 = 7.16 Å).

However, after pressure release to 0 GPa, the same hypercubic lattice parameter as before
the experiment was found. Thus, large hysteresis loops in the p–V diagrams were observed
(figure 3). When the pressure is increased for a second time, the data points lie on to the
previous pressure-release curve. The lattice spacings start to increase upon pressure increase,
reach their maximum values at about 2 GPa and decrease monotonically for all pressures above
that (empty squares in figure 3). These hysteresis loops have been observed for several runs.
None of these effects are due to effects of bridging by the sample grains between the diamond
anvils. This hypothesis was ruled out on the basis of our observations of the sample volume
by optical microscopy.

4. Discussion

The behaviour presented in the previous section can be explained by taking into account the
presence of a uniaxial stress component inside the diamond anvil cell. To describe the stress
conditions, we employ a rectangular coordinate system with stress components σ1 and σ2

parallel and σ3 perpendicular to the diamond faces. The stress component σ3 is parallel to
the direction of the external force acting on the diamond anvils. Since the sample volume of
a diamond anvil cell has a cylindrical symmetry, it is assumed that σ1 = σ2. The uniaxial
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Figure 3. The hysteresis loop of Ti–Zr–Ni during first compression (filled squares), pressure release
(filled circles) and second compression (empty squares). Pressure was calibrated using the ruby
fluorescence method.

stress component is defined as t = σ3 − σ1. The hydrostatic pressure σp is given by
σp = (σ1 + σ2 + σ3)/3 = (σ1 + t/3). It is common for compressive stresses and strains
resulting from them to be taken to be negative.

The behaviour of cubic crystals under non-hydrostatic conditions has been investigated
in great detail by A K Singh and G C Kennedy [21, 22]. The authors demonstrated that the
strain in diffraction experiments depends on the crystallographic direction and on the elastic
anisotropy coefficient of the sample. Inelastic neutron scattering experiments and ultrasonic
measurements on icosahedral alloys showed that phonon dispersion modes and sound velocities
are independent of quasicrystallographic directions [23]. From this point of view it is justified
to treat icosahedral alloys as elastically isotropic solids. For elastically isotropic solid the
Singh–Kennedy equation simplifies to

ε = εp + εt = σp

3B
− t

3
(1 − 3 cos2 �)

1

2µ
(4)

where εp describes the lattice strain under hydrostatic conditions and εt is the strain caused
by non-hydrostatic stress, B is the bulk modulus, t the value of the uniaxial stress component,
µ the shear modulus of the sample and � is the angle between the stress direction and the
normals of the diffracting lattice planes (figure 4).

According to equation (4), in the presence of a uniaxial stress component the value of the
lattice parameter depends on the direction in which it is measured. A non-hydrostatic stress
component will cause an additional strain which is proportional to t and indirectly proportional
to the shear modulus µ. Since typical diffraction angles � are in the range of 3◦ to 7◦ and
t is expected to be collinear with the incoming beam, the angle � is close to 90◦. With t
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incoming beam (direction of external load)

diffracted beam

diffracting plane normal

2 �

��

Figure 4. The diffraction geometry in the energy-dispersive x-ray diffraction experiments using a
diamond anvil cell. Note that only lattice planes with normals nearly perpendicular to the incoming
beam contribute to the diffracted intensity.

being defined to be negative, the resulting strain εt will be positive. This corresponds to an
additional expansion of the quasilattice (see also figure 2 of [24]). One should note that a
positive (compressive) additional strain will be measured if one observes lattice planes with
normals parallel to the external load (� = 0◦).

It has been found that the stress component t tends to saturate at certain values (maximum
shear stress or the von Mises criterion) [22]:

|t | � σy ≈ 2 τy (5)

where σy is the yield strength and τy is the shear strength of the sample material or of the
pressure-transmitting medium. In the experiment described here, the maximum value ts is
related to the shear strength of sodium chloride. This is supported by the fact that the Ti–Zr–
Ni flakes maintained the same shapes up to the highest pressures applied. The yield point of
the sample material was not reached: this would have resulted in a deformation or fracture
of the sample grain. The shear modulus and Poisson’s ratio of icosahedral Ti–Zr–Ni could
not previously be determined directly, since strain gauge measurements, inelastic neutron
scattering experiments and sound velocity measurements require single-domain samples
measuring at least some cubic millimetres. The shear modulus of the sample can be calculated
with equation (4) if the uniaxial stress component is known exactly. To determine the uniaxial
stress component caused by sodium chloride, it is necessary to determine the positions of the
Bragg reflections of NaCl corresponding to different symmetry directions. From these, t can be
calculated using the theory of Singh and Kennedy for elastically anisotropic solids. However,
in the experiments described here, the counting times were too short, so just the position
of the (200) reflection of sodium chloride could be determined with the accuracy required.
High-pressure experiments on Cu3Au foils embedded in NaCl in a diamond anvil cell [15]
showed that the uniaxial stress component in NaCl has a value t ≈ −0.3 GPa for hydrostatic
pressures below 14 GPa. These data scatter strongly between −0.2 GPa and −0.4 GPa. Also,
the reported errors for each value are about 0.1 GPa. To estimate the shear modulus, we
assume that the uniaxial stress component has a saturation value of −0.3 GPa. It should be
noted also that the maximum stress value ts depends on pressure. Experiments on pure NaCl
in an opposed-anvil device [25] showed that t rises to −0.5 GPa at hydrostatic pressures of
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about 20 GPa. Since the aim of the present paper is just an estimation of the shear modulus of
Ti–Zr–Ni, this effect will be neglected here.

With increasing hydrostatic pressure, also non-hydrostatic stresses inside the pressure-
transmitting medium start to develop. The expansive strain resulting from non-hydrostatic
stress is larger than the strain due to hydrostatic compression. Thus, a lattice increase with
pressure can be noticed. After the uniaxial stress component reaches its saturation value ts ,
a constant additional strain εt will be observed, i.e. the resulting p–V curve is shifted with
respect to the compression curve in the hydrostatic case (figure 5). This difference is

δε = εt = − ts

3
(1 − 3 cos2 �)

1

2µ
. (6)
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Figure 5. The dependence of the relative hypercubic lattice constant on the pressure. The solid line
is a fit with a Birch EOS (B0 = 166 GPa, B ′

0 = 1.9 and a0 = 1.0071); the dashed line corresponds
to a calculated Birch EOS with the same values for B0 and B ′

0. The difference between the two
curves is the strain component εt due to non-hydrostatic compression.

As mentioned above, a Birch EOS can only be fitted to the data if one assumes a relative
hypercubic lattice constant of 1.0071 at zero pressure. Making the approximation cos2 � ≈ 0,
one gets

εt = −ts

6µ
≈ 0.0071. (7)

Using ts = −0.3 GPa, one finds, for the shear modulus of Ti–Zr–Ni, µ ≈ 7 GPa with a
relative error of about 50 %. This error is due to the fact that the value of t is not known exactly.
The estimated shear modulus of Ti–Zr–Ni is low compared to the shear moduli of icosahedral
Al–Cu–Fe, Al–Pd–Mn (both µ ≈ 65 GPa) [6,8] and Al–Li–Cu (µ ≈ 38 GPa) [26]. Using the
bulk modulus of Ti–Zr–Ni (B0 = 166 GPa), one can calculate the Poisson’s ratio ν:

ν = B0 − 2
3µ

2B0 + 2
3µ

. (8)

For Ti–Zr–Ni, we find ν = 0.48 ± 0.015. This value is close to the maximum value of
ν = 0.5 allowed by the laws of thermodynamics. The Poisson’s ratios of common metals
(ν ≈ 0.3) [27] and other icosahedral alloys like Al–Cu–Fe (ν = 0.19) [6], Al–Pd–Mn
(ν = 0.28) [8] and Al–Li–Cu (ν = 0.25) [26] are much lower.
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The behaviour during the initial compression, i.e. a low bulk modulus and a lattice size
increase in the pressure region between 5 GPa and 8 GPa, still needs to be explained. A
material with a high Poisson’s ratio has a Young’s modulus Y which is lower than the bulk
modulus:

Y = 3B0(1 − 2ν). (9)

A low Young’s modulus corresponds to a high compressibility in the direction of the
applied load. This fact explains the low bulk modulus determined during the initial pressure
increase. As can be seen in figure 4, the lattice planes contributing to the scattered intensity are
aligned nearly perpendicularly to the incoming beam (and the external force). Since a stage
of high compressibility is observed at the beginning, the uniaxial stress component cannot be
collinear with the external force. The reason for this is that the sample grain is inhomogeneously
surrounded by NaCl grains of different sizes and shapes. Thus the external load is transmitted
via a large number of NaCl grains, so the resulting stress at the sample position may have a
different direction with respect to the external load. At higher hydrostatic pressures of about
5 GPa to 8 GPa, the NaCl grains get compacted until the sample grain is embedded in a more
homogeneous environment. This effect was observed with optical microscopy: during the
initial stage the view of the sample grain is rather blurred; for pressures above 8 GPa the
pressure medium becomes homogeneous and optically more transparent.

During the process of compacting of the sodium chloride grains, the uniaxial stress
component changes its direction; after the compacting process is completed, the uniaxial
stress component has the same direction as the external load. Thus, the angle � in equation
(4) changes to � = 90◦ − � ≈ 90◦, so the sign of εt reverses which results in an increase of
the quasilattice parameter.

In the following, a simple model is introduced which describes the behaviour of icosahedral
Ti–Zr–Ni. Since at the beginning of the experiment the angle � is not 90◦, it was arbitrarily
assumed that 1 − 3 cos2 � = −1. Furthermore, it was assumed that the uniaxial stress
component increases linearly with pressure. The observed data can be described very well
with t (p) = 0.12 σp. Thus t reaches its maximum value of −0.3 GPa at a pressure of 2.5 GPa
(region 1 in figure 6). After t has reached a saturation value of −0.3 GPa, the non-hydrostatic
stress component remains constant. This corresponds to a constant additional compressive
strain of ε ≈ −0.0078. The situation is unchanged until a hydrostatic pressure ofσp = 5 GPa is
reached (region 2 in figure 6). Between 5 GPa and 8 GPa the pressure medium gets compacted.
The uniaxial stress component will change its direction until it is collinear with the direction
of the external load. In our model, the term 1 − 3 cos2 � was assumed to rise linearly with
increasing pressure until a value of � = 90◦ − � is reached. This stage ends at a hydrostatic
pressure of σp = 8 GPa (region 3 in figure 6). This process is irreversible: for pressures above
8 GPa, the uniaxial stress component t remains constant in value and direction (region 4 in
figure 6).

Finally, the effects observed are not in contradiction to the thermodynamical law which
says that the compressibility

κ = − 1

V

(
δV

δp

)
T

is always positive [28]. Materials with Poisson’s ratios close to 0.5 are easily compressed
in the direction of the applied stress (low Young’s modulus), but show a strong expansion of
lattice spacings perpendicular to the stress direction. All in all, the volume of such materials
decreases with pressure. In the diffraction geometry used here, only lattice planes whose
normals lie nearly perpendicularly to the stress direction can be detected.
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Figure 6. The hysteresis loop of Ti–Zr–Ni. The symbols are explained in the caption of figure 3.
The numbers are explained in the text. The solid line is calculated using the model for pressure
increase; the dotted line is calculated using the model described in the text during the pressure
release and second pressure increase.
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Appendix

Poisson’s ratio is defined as

ν = −S12

S11
. (A.1)

The bulk modulus is

B0 = 1

3(S11 + 2S12)
. (A.2)

The shear modulus in elastically isotropic solids is

µ = 1

2(S11 − S12)
(A.3)

with Sij being the elastic compliances.
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